Non-Rigid Spectral Correspondence of Triangle Meshes

نویسندگان

  • Varun Jain
  • Hao Zhang
  • Oliver van Kaick
چکیده

We present an algorithm for finding a meaningful vertex-to-vertex correspondence between two triangle meshes, which is designed to handle general non-rigid transformations. Our algorithm operates on embeddings of the two shapes in the spectral domain so as to normalize them with respect to uniform scaling and rigid-body transformation. Invariance to shape bending is achieved by relying on approximate geodesic point proximities on a mesh to capture its shape. To deal with moderate stretching, we first raise the issue of “eigenmode switching” and discuss heuristics to bring the eigenmodes to alignment. For additional non-rigid discrepancies in the spectral embeddings, we propose to use non-rigid alignment via thin-plate splines. This is combined with a refinement step based on geodesic proximities to improve dense correspondence. We show empirically that our algorithm outperforms previous spectral methods, as well as schemes that compute correspondence in the spatial domain via non-rigid iterative closest points or the use of local shape descriptors, e.g., 3D shape context. Finally, to speed up our algorithm, we examine the effect of using subsampling and Nyström method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Correspondence by Breadth-First Search Frontiers

This paper presents a novel, robust, and fast 3D shape correspondence algorithm applicable to the two snapshots of the same object in arbitrary deformation. Given two such frames as triangle meshes with fixed connectivity, our algorithm first classifies vertices into Breadth-First Search (BFS) frontiers according to their unweighted shortest path distance from a source vertex. This is followed ...

متن کامل

SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes

Non-rigid 3D shape retrieval has become an important research direction in content-based 3D object retrieval. The aim of this track is to measure and compare the performance of non-rigid 3D shape retrieval methods implemented by different participants around the world. The track is based on a new non-rigid 3D shape benchmark, which contains 600 watertight triangle meshes that are equally classi...

متن کامل

Rigid registration of different poses of animated shapes

Different poses of 3D models are very often given in different positions and orientations in space. Since most of the computer graphics algorithms do not satisfy geometric invariance, it is very important to bring shapes into a canonical coordinate frame before any processing. In this paper we consider the problem of finding the best alignment between two or more different poses of the same obj...

متن کامل

An Image Processing Approach to Surface Matching

Establishing a correspondence between two surfaces is a basic ingredient in many geometry processing applications. Existing approaches, which attempt to match two meshes directly in 3D, can be cumbersome to implement and it is often hard to produce accurate results in a reasonable amount of time. In this paper, we present a new variational method for matching surfaces that addresses these issue...

متن کامل

On the Parameterization and the Geometry of the Configuration Space of a Single Planar Robot

Different poses of 3D models are very often given in different positions and orientations in space. Since most of the computer graphics algorithms do not satisfy geometric invariance, it is very important to bring shapes into a canonical coordinate frame before any processing. In this paper we consider the problem of finding the best alignment between two or more different poses of the same obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Shape Modeling

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007